$R_{\rm int} = 0.024$

refinement

 $\Delta \rho_{\text{max}} = 0.74 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -1.24 \text{ e} \text{ Å}^{-3}$

 $0.28 \times 0.27 \times 0.25 \text{ mm}$

54250 measured reflections

14412 independent reflections

12969 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rhodamine 6G hexachloridostannate(IV) acetonitrile disolvate

Ramaiyer Venkatraman,^a Lungile Sitole^a and Frank R. Fronczek^b*

^aDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ramaiyer.venkatraman@jsums.edu

Received 29 November 2007; accepted 10 December 2007

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.073; data-to-parameter ratio = 39.8.

In the title compound, bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3-ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate, $(C_{27}H_{29}N_2O_3)_2$ -[SnCl₆]·2C₂H₃N, the octahedral SnCl₆²⁻ anion lies on an inversion center. The xanthene ring system is essentially planar, with an average deviation of 0.020 Å, and the substituent benzene ring forms a dihedral angle of 85.89 (2)° with it. The Sn-Cl distances are in the range 2.4237 (3)-2.4454 (3) Å. There are N-H···Cl hydrogen bonds between SnCl₆²⁻ ions and rhodamine 6G cations as well as π - π stacking interactions between rhodamine 6G cations (interplanar distance of 3.827 Å).

Related literature

For related literature, see: Bhagavthy *et al.* (1993); Fun *et al.* (1997); Herz (1974); Johnson & McGrane (1993); Liu *et al.* (1998); Nguyen & Meyer (1992); Wang *et al.* (1997). For the structure of the analogous ethyl ester as the chloride salt hydrate, see: Adhikesavalu *et al.* (2001).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{27}{\rm H}_{29}{\rm N}_{2}{\rm O}_{3})_{2}[{\rm SnCl}_{6}]\cdot 2{\rm C}_{2}{\rm H}_{3}{\rm N} \\ M_{r} = 1272.54 \\ {\rm Triclinic}, \ P\overline{\rm I} \\ a = 9.7871 \ (10) \ {\rm \AA} \\ b = 11.7827 \ (11) \ {\rm \AA} \\ c = 13.2893 \ (12) \ {\rm \AA} \end{array}$

 $\alpha = 80.583 (4)^{\circ}$ $\beta = 77.309 (4)^{\circ}$ $\gamma = 82.467 (4)^{\circ}$ $V = 1467.7 (2) \text{ Å}^{3}$ Z = 1Mo K\alpha radiation $\mu = 0.76 \text{ mm}^{-1}$ T = 90.0 (5) K

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream Absorption correction: multi-scan (*DENZO* and *SCALEPACK*; Otwinowski & Minor, 1997) $T_{\rm min} = 0.815, T_{\rm max} = 0.832$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.073$ S = 1.0314412 reflections 362 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{ \begin{array}{c} N1 - H1N \cdots Cl2 \\ N2 - H2N \cdots Cl1^{i} \end{array} } $	0.81 (2)	2.61 (2)	3.3644 (10)	156 (2)
	0.86 (2)	2.75 (2)	3.5603 (10)	159 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

RV acknowledges support for supplies by the grant JSU RISE program (NIH grant No. 1RO25GM067122). The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2056).

References

- Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657–659.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bhagavthy, V., Reddy, M. L. P., Rao, T. R. & Damodaran, A. D. (1993). Indian J. Chem. Sect. A, 32, 463–464.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619–1620.
- Herz, A. H. (1974). Photogr. Sci. Eng. 18, 323-335.
- Johnson, G. E. & McGrane, K. M. (1993). Proc. SPIE-Int. Soc. Opt. Eng. 1910, 6–14.
- Liu, C.-M., Xiong, R.-G., You, X.-Z. & Chen, W. (1998). Acta Chem. Scand. 52, 883–890.
- Nguyen, D. H. & Meyer, Y. H. (1992). Appl. Phys. B, 55, 409-412.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wang, H., Xiong, R.-G., Liu, C.-M., Chen, H.-Y., You, X.-Z. & Chen, W. (1997). *Inorg. Chim. Acta*, 254, 183–187.

Acta Cryst. (2008). E64, m199 [doi:10.1107/S1600536807066287]

Rhodamine 6G hexachloridostannate(IV) acetonitrile disolvate

R. Venkatraman, L. Sitole and F. R. Fronczek

Comment

The excellent photo-physical properties of rhodamines are well known (Herz, 1974; Johnson & McGrane, 1993; Nguyen & Meyer, 1992), and recently metal complexes of rhodamine 6 G have been reported by several authors (Bhagavthy *et al.*, 1993; Fun *et al.*, 1997; Wang *et al.*, 1997; Liu *et al.*, 1998). The aggregative properties of cationic species of the dye were observed to be dependent on the anionic environment created by the metal ions. We have synthesized a rhodamine 6 G derivative, 9-[2-methoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethylxanthylium hexachlorotin(IV) diacetonitrile solvate, (I), the structure of which is presented in this paper.

The structure of (I) consists of discrete $SnCl_6^{2-}$ anions lying on inversion centers, rhodamine 6 G cations and acetonitrile solvent molecules (Fig. 1). The xanthene ring of the cation is planar within an average deviation of 0.020 Å (maximum deviation is 0.045 (1) Å for C4), and the phenyl ring forms a dihedral angle of 85.89 (2)° with it. The C—N distances N1—C24 and N2—C26 are normal for this type of single bond, whereas C3—N1 and C11—N2 are much shorter, showing partial double-bond character; details are in the Table. A similar trend is observed in the other rhodamine 6 G cations (Wang *et al.*, 1997; Liu *et al.*, 1998).

Both hydrogen bonding between cations and anions and π - π stacking interactions between rhodamine 6 G cations exist. Parallel rhodamine ions related by the inversion center have an interplanar distance of 3.827 Å (Fig. 2), and are slipped such that their O1—C13 bonds exactly overlap.

Experimental

Diphenyl tin dichloride (0.344 g, 1 mmol) was dissolved in 20 ml me thanol, and then 20 ml of methanol solution of rhodamine 6 G (0.479 g, 1 mmol) was added. The bright red solution was refluxed for 1 hr, whereafter red brown solid were obtained on cooling. Suitable size crystals were obtained by the recrystallization at room temperature from acetonitrile (yield *ca* 85%).

Refinement

H atoms were placed in idealized positions with C—H distances at 0.99, 0.98 and 0.95 Å for CH₂, CH₃ and aromatic CH groups, respectively using a riding model. U_{iso} for H was assigned as 1.2 times U_{eq} of the attached C atoms (1.5 for methyl); a torsional parameter was refined for each methyl group. The largest positive and negative residual density peaks were located within 1 Å of the Sn1 position.

Figures

Fig. 1. Numbering scheme and ellipsoids at the 50% level. (i = 1 - x, -y, -z).

Fig. 2. The unit cell, showing stacking of rhodamine cations and hydrogen bonding.

bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3- ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate

Crystal data	
$(C_{27}H_{29}N_2O_3)_2[SnCl_6]\cdot 2C_2H_3N$	Z = 1
$M_r = 1272.54$	$F_{000} = 654$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.440 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.7871 (10) Å	Cell parameters from 13141 reflections
b = 11.7827 (11) Å	$\theta = 2.5 - 36.8^{\circ}$
c = 13.2893 (12) Å	$\mu = 0.76 \text{ mm}^{-1}$
$\alpha = 80.583 \ (4)^{\circ}$	T = 90.0 (5) K
$\beta = 77.309 \ (4)^{\circ}$	Fragment, red-orange
$\gamma = 82.467 \ (4)^{\circ}$	$0.28\times0.27\times0.25~mm$
$V = 1467.7 (2) \text{ Å}^3$	

Data collection

Nonius KappaCCD	14412 independent reflections
diffractometer with Oxford Cryostream	
Radiation source: fine-focus sealed tube	12969 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 90.0(5) K	$\theta_{\text{max}} = 36.8^{\circ}$
ω scans with κ offsets	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan	
(DENZO and SCALEPACK; Otwinowski & Minor,	$h = -16 \rightarrow 16$
1997)	
$T_{\min} = 0.815, \ T_{\max} = 0.832$	$k = -19 \rightarrow 19$
54250 measured reflections	$l = -22 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 0.821P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.073$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$
14412 reflections	$\Delta \rho_{min} = -1.24 \text{ e } \text{\AA}^{-3}$
362 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0053 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sn1	0.5000	0.0000	0.0000	0.00926 (3)
Cl1	0.53900 (3)	0.04133 (2)	0.164917 (19)	0.01502 (5)
Cl2	0.51522 (3)	0.20275 (2)	-0.07554 (2)	0.01362 (4)
C13	0.24802 (3)	0.04038 (2)	0.05732 (2)	0.01381 (4)
01	0.40633 (8)	0.58975 (7)	0.38427 (6)	0.01354 (13)
O2	1.06811 (9)	0.46854 (8)	0.36352 (7)	0.01853 (15)
O3	0.83375 (10)	0.47563 (9)	0.39044 (9)	0.0272 (2)
N1	0.42673 (10)	0.33594 (9)	0.13842 (8)	0.01642 (17)
H1N	0.4731 (19)	0.3059 (16)	0.0897 (14)	0.020*
N2	0.35159 (10)	0.83221 (9)	0.64389 (7)	0.01542 (16)
H2N	0.3892 (19)	0.8743 (16)	0.6750 (14)	0.019*
C1	0.48174 (10)	0.54161 (9)	0.30004 (8)	0.01118 (15)
C2	0.41464 (10)	0.46614 (9)	0.26289 (8)	0.01275 (16)
H2	0.3206	0.4516	0.2948	0.015*
C3	0.48671 (11)	0.41085 (9)	0.17721 (8)	0.01291 (16)

C4	0.63032 (11)	0.43418 (9)	0.12992 (8)	0.01360 (16)
C5	0.69115 (11)	0.51151 (9)	0.16815 (8)	0.01310 (16)
Н5	0.7846	0.5275	0.1359	0.016*
C6	0.62049 (10)	0.56913 (9)	0.25423 (8)	0.01122 (15)
C7	0.68061 (10)	0.64746 (8)	0.29612 (8)	0.01058 (15)
C8	0.60111 (10)	0.69685 (9)	0.38325 (8)	0.01108 (15)
C9	0.65144 (10)	0.77664 (9)	0.43315 (8)	0.01170 (15)
Н9	0.7429	0.8005	0.4054	0.014*
C10	0.57244 (11)	0.82019 (9)	0.51976 (8)	0.01222 (15)
C11	0.43234 (11)	0.78594 (9)	0.56098 (8)	0.01258 (16)
C12	0.38037 (11)	0.70714 (9)	0.51364 (8)	0.01331 (16)
H12	0.2889	0.6832	0.5408	0.016*
C13	0.46414 (10)	0.66475 (9)	0.42693 (8)	0.01159 (15)
C14	0.70941 (13)	0.37222 (11)	0.04109 (10)	0.0197 (2)
H14A	0.8074	0.3907	0.0232	0.030*
H14B	0.6655	0.3969	-0.0195	0.030*
H14C	0.7069	0.2886	0.0616	0.030*
C15	0.62856 (12)	0.90417 (10)	0.57043 (9)	0.01553 (17)
H15A	0.7239	0.9186	0.5326	0.023*
H15B	0.6310	0.8716	0.6428	0.023*
H15C	0.5674	0.9770	0.5689	0.023*
C16	0.82316 (10)	0.68456 (8)	0.24669 (8)	0.01064 (15)
C17	0.94862 (10)	0.62467 (9)	0.27097 (8)	0.01147 (15)
C18	1.07793 (11)	0.66730 (9)	0.22341 (8)	0.01360 (16)
H18	1.1625	0.6273	0.2402	0.016*
C19	1.08333 (11)	0.76787 (9)	0.15174 (8)	0.01417 (17)
H19	1.1713	0.7963	0.1196	0.017*
C20	0.95942 (12)	0.82636 (10)	0.12744 (9)	0.01498 (17)
H20	0.9629	0.8948	0.0784	0.018*
C21	0.82987 (11)	0.78526 (9)	0.17463 (8)	0.01412 (17)
H21	0.7457	0.8260	0.1576	0.017*
C22	0.94161 (11)	0.51676 (9)	0.34679 (9)	0.01400 (17)
C23	1.06484 (13)	0.36159 (11)	0.43498 (10)	0.0211 (2)
H23A	0.9925	0.3717	0.4976	0.032*
H23B	1.1569	0.3406	0.4543	0.032*
H23C	1.0429	0.3000	0.4014	0.032*
C24	0.28833 (12)	0.29543 (10)	0.18084 (9)	0.01633 (18)
H24A	0.2628	0.3019	0.2562	0.020*
H24B	0.2931	0.2127	0.1733	0.020*
C25	0.17375 (14)	0.36257 (13)	0.12788 (12)	0.0258 (2)
H25A	0.1665	0.4443	0.1367	0.039*
H25B	0.0836	0.3314	0.1593	0.039*
H25C	0.1973	0.3554	0.0535	0.039*
C26	0.20472 (12)	0.81093 (11)	0.68565 (9)	0.0185 (2)
H26A	0.2000	0.7296	0.7190	0.022*
H26B	0.1527	0.8234	0.6281	0.022*
C27	0.13662 (13)	0.89136 (12)	0.76511 (10)	0.0232 (2)
H27A	0.1871	0.8779	0.8227	0.035*
H27B	0.0382	0.8763	0.7920	0.035*

H27C	0.1406	0.9718	0.7319	0.035*
N3	-0.01218 (17)	0.87440 (15)	0.42927 (13)	0.0429 (4)
C28	0.09893 (16)	0.88240 (12)	0.37996 (11)	0.0259 (2)
C29	0.23901 (15)	0.89178 (14)	0.31671 (11)	0.0267 (3)
H29A	0.2723	0.8203	0.2862	0.040*
H29B	0.3031	0.9042	0.3603	0.040*
H29C	0.2364	0.9571	0.2609	0.040*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01002 (4)	0.00916 (4)	0.00947 (4)	-0.00130 (3)	-0.00229 (3)	-0.00309 (3)
Cl1	0.01755 (10)	0.01736 (11)	0.01246 (10)	-0.00091 (8)	-0.00530 (8)	-0.00629 (8)
Cl2	0.01605 (10)	0.01023 (9)	0.01489 (10)	-0.00222 (7)	-0.00319 (8)	-0.00189 (7)
C13	0.01070 (9)	0.01542 (10)	0.01489 (10)	-0.00084(7)	-0.00195 (7)	-0.00214 (8)
01	0.0112 (3)	0.0151 (3)	0.0155 (3)	-0.0041 (2)	0.0009 (2)	-0.0078 (3)
O2	0.0122 (3)	0.0194 (4)	0.0205 (4)	0.0012 (3)	-0.0034 (3)	0.0050 (3)
03	0.0140 (4)	0.0235 (4)	0.0401 (6)	-0.0072 (3)	-0.0080 (4)	0.0150 (4)
N1	0.0148 (4)	0.0163 (4)	0.0198 (4)	-0.0041 (3)	0.0003 (3)	-0.0103 (3)
N2	0.0155 (4)	0.0181 (4)	0.0135 (4)	-0.0043 (3)	0.0004 (3)	-0.0073 (3)
C1	0.0097 (3)	0.0108 (4)	0.0131 (4)	-0.0009 (3)	-0.0008 (3)	-0.0041 (3)
C2	0.0104 (4)	0.0126 (4)	0.0162 (4)	-0.0023 (3)	-0.0012 (3)	-0.0058 (3)
C3	0.0126 (4)	0.0116 (4)	0.0155 (4)	-0.0019 (3)	-0.0024 (3)	-0.0047 (3)
C4	0.0120 (4)	0.0142 (4)	0.0150 (4)	-0.0018 (3)	-0.0005 (3)	-0.0058 (3)
C5	0.0109 (4)	0.0143 (4)	0.0143 (4)	-0.0017 (3)	-0.0002 (3)	-0.0054 (3)
C6	0.0094 (3)	0.0113 (4)	0.0132 (4)	-0.0014 (3)	-0.0015 (3)	-0.0034 (3)
C7	0.0092 (3)	0.0106 (4)	0.0119 (4)	-0.0011 (3)	-0.0016 (3)	-0.0022 (3)
C8	0.0106 (4)	0.0112 (4)	0.0118 (4)	-0.0019 (3)	-0.0017 (3)	-0.0026 (3)
C9	0.0116 (4)	0.0114 (4)	0.0128 (4)	-0.0022 (3)	-0.0026 (3)	-0.0026 (3)
C10	0.0133 (4)	0.0121 (4)	0.0123 (4)	-0.0023 (3)	-0.0031 (3)	-0.0030 (3)
C11	0.0136 (4)	0.0126 (4)	0.0115 (4)	-0.0019 (3)	-0.0010 (3)	-0.0032 (3)
C12	0.0129 (4)	0.0138 (4)	0.0135 (4)	-0.0039 (3)	0.0007 (3)	-0.0052 (3)
C13	0.0112 (4)	0.0115 (4)	0.0127 (4)	-0.0025 (3)	-0.0015 (3)	-0.0038 (3)
C14	0.0171 (5)	0.0222 (5)	0.0207 (5)	-0.0045 (4)	0.0030 (4)	-0.0129 (4)
C15	0.0174 (4)	0.0168 (4)	0.0149 (4)	-0.0039 (3)	-0.0038 (3)	-0.0067 (3)
C16	0.0095 (3)	0.0114 (4)	0.0114 (4)	-0.0020 (3)	-0.0014 (3)	-0.0028 (3)
C17	0.0099 (4)	0.0109 (4)	0.0135 (4)	-0.0015 (3)	-0.0016 (3)	-0.0020 (3)
C18	0.0097 (4)	0.0142 (4)	0.0168 (4)	-0.0018 (3)	-0.0015 (3)	-0.0029 (3)
C19	0.0122 (4)	0.0149 (4)	0.0153 (4)	-0.0037 (3)	-0.0001 (3)	-0.0034 (3)
C20	0.0152 (4)	0.0147 (4)	0.0144 (4)	-0.0045 (3)	-0.0019 (3)	0.0005 (3)
C21	0.0121 (4)	0.0140 (4)	0.0158 (4)	-0.0018 (3)	-0.0031 (3)	-0.0002 (3)
C22	0.0124 (4)	0.0128 (4)	0.0167 (4)	-0.0012 (3)	-0.0042 (3)	-0.0002 (3)
C23	0.0200 (5)	0.0197 (5)	0.0199 (5)	0.0023 (4)	-0.0043 (4)	0.0049 (4)
C24	0.0158 (4)	0.0139 (4)	0.0206 (5)	-0.0046 (3)	-0.0018 (4)	-0.0065 (4)
C25	0.0188 (5)	0.0259 (6)	0.0337 (7)	-0.0029 (4)	-0.0078 (5)	-0.0030 (5)
C26	0.0152 (4)	0.0217 (5)	0.0186 (5)	-0.0044 (4)	0.0023 (4)	-0.0088 (4)
C27	0.0178 (5)	0.0290 (6)	0.0230 (5)	-0.0010 (4)	0.0017 (4)	-0.0134 (5)
N3	0.0356 (7)	0.0410 (8)	0.0433 (8)	-0.0075 (6)	0.0048 (6)	0.0053 (7)

C28 C29	0.0311 (6) 0.0252 (6)	0.0223 (6) 0.0370 (7)	0.0233 (6) 0.0190 (5)	-0.0063 (5) -0.0098 (5)	-0.0045 (5) -0.0050 (4)	0.0009 (4) -0.0010 (5)
Geometric paran	neters (Å, °)					
Sn1—Cl3		2.4237 (3)	C14–	-H14A	0.98	800
Sn1—Cl3 ⁱ		2.4237 (3)	C14–	-H14B	0.98	300
Sn1—Cl1 ⁱ		2,4396 (3)	C14–	-H14C	0.98	300
Sn1—Cl1		2.4396 (3)	C15–	-H15A	0.98	800
$Sn1 - C12^{i}$		2.4454 (3)	C15-	-H15B	0.98	800
Sn1 - Cl2		2 4454 (3)	C15-	-H15C	0.98	:00
01—C1		1.3618 (12)	C16-		1.39	966 (15)
O1—C13		1.3632 (12)	C16–		1.40	80 (14)
O2—C22		1.3417 (13)	C17–	-C18	1.40	017 (14)
O2—C23		1.4479 (15)	C17–	C22	1.48	65 (15)
O3—C22		1.2078 (14)	C18–	C19	1.39	25 (15)
N1—C3		1.3443 (13)	C18–	-H18	0.95	00
N1-C24		1.4583 (15)	C19–	-C20	1.38	93 (16)
N1—H1N		0.81 (2)	C19–	-H19	0.95	000
N2—C11		1.3553 (13)	C20–	C21	1.39	55 (15)
N2—C26		1.4613 (15)	C20–	-H20	0.95	00
N2—H2N		0.86 (2)	C21–	-H21	0.95	00
C1—C2		1.3802 (14)	C23–	-H23A	0.98	300
C1—C6		1.4169 (14)	C23–	-H23B	0.98	300
C2—C3		1.4099 (14)	C23–	-H23C	0.98	800
С2—Н2		0.9500	C24–	C25	1.52	.01 (18)
C3—C4		1.4500 (15)	C24–	-H24A	0.99	000
C4—C5		1.3673 (14)	C24–	–H24B	0.99	000
C4—C14		1.5027 (15)	C25–	-H25A	0.98	300
C5—C6		1.4252 (14)	C25–	-H25B	0.98	300
С5—Н5		0.9500	C25–	-H25C	0.98	300
C6—C7		1.4008 (14)	C26–	-C27	1.51	98 (16)
C/—C8		1.4109 (14)	C26–	-H26A	0.99	000
C/-C16		1.4941 (14)	C26–	-H26B	0.99	200
C8-C13		1.4128 (14)	C27-	-H2/A	0.98	00
$C_8 = C_9$		1.4200 (14)	C27-	$-\Pi 2/B$	0.98	200
C9-C10		1.3727 (14)	C2/-	$-\Pi 2/C$	0.98	6 (2)
C_{j}		1.4442(15)	C28_	-C29	1.14	(2)
C10-C15		1.4442(13) 1.5024(14)	C28-		0.98	300
C_{11} C_{12} C_{13}		1.3024(14) 1.4043(14)	C29_	_H29R	0.98	:00
C12 - C13		1 3839 (14)	C29-	-H29C	0.98	:00
C12—H12		0.9500	02)	11270	0.90	
Cl3—Sn1—Cl3 ⁱ		180.0	H14A	—C14—H14C	109.	.5
C_{13} Sn1 $-C_{11}^{i}$		89.363 (10)	H14F	3—C14—H14C	109	.5
$Cl2^{i}$ Sr1 $Cl1^{i}$		90 638 (10)	C10_	-C15-H15A	100	5
Cl3—Sn1—Cl1		90.638 (10)	C10–	-C15—H15B	109	.5

Cl3 ⁱ —Sn1—Cl1	89.362 (10)	H15A—C15—H15B	109.5
Cl1 ⁱ —Sn1—Cl1	180.0	C10—C15—H15C	109.5
Cl3—Sn1—Cl2 ⁱ	90.291 (10)	H15A—C15—H15C	109.5
Cl3 ⁱ —Sn1—Cl2 ⁱ	89.709 (10)	H15B—C15—H15C	109.5
Cl1 ⁱ —Sn1—Cl2 ⁱ	90.829 (10)	C21—C16—C17	119.27 (9)
Cl1—Sn1—Cl2 ⁱ	89.170 (10)	C21—C16—C7	117.43 (9)
Cl3—Sn1—Cl2	89.709 (10)	C17—C16—C7	123.29 (9)
Cl3 ⁱ —Sn1—Cl2	90.290 (10)	C18—C17—C16	119.71 (9)
Cl1 ⁱ —Sn1—Cl2	89.171 (11)	C18—C17—C22	121.02 (9)
Cl1—Sn1—Cl2	90.830 (10)	C16—C17—C22	119.27 (9)
$Cl2^{i}$ —Sn1—Cl2	180.0	C19—C18—C17	120.52 (10)
C1 - O1 - C13	120.30 (8)	C19—C18—H18	119.7
$C_{22} - C_{23}$	114.57 (9)	C17—C18—H18	119.7
$C_3 = N_1 = C_2 4$	126.24 (9)	C20-C19-C18	119.63 (10)
$C_3 = N_1 = H_1 N_1$	1180(13)	C_{20} C_{19} H_{19}	120.2
C_24 —N1—H1N	115.6 (13)	C_{18} C_{19} H_{19}	120.2
$C_{11} = N_{2} = C_{26}$	123 53 (9)	C19 - C20 - C21	120.2 120.47 (10)
$C_{11} = N_2 = C_{20}$	125.55(0) 118 5 (12)	$C_{10} = C_{20} = C_{21}$	110.8
$C_{11} = N_2 = M_2 N$	118.3(12) 118.0(12)	$C_{19} = C_{20} = H_{20}$	119.8
C_{20} N_{2} H_{2N}	116.0 (12)	$C_{21} = C_{20} = H_{20}$	119.8
01 = C1 = C2	110.05 (9)	$C_{20} = C_{21} = C_{10}$	120.40 (10)
01 - C1 - C6	121.03 (9)	C20-C21-H21	119.8
C2—C1—C6	122.93 (9)	C16—C21—H21	119.8
C1 - C2 - C3	119.50 (9)	03-C22-O2	122.39 (10)
C1—C2—H2	120.3	O3—C22—C17	124.24 (10)
С3—С2—Н2	120.3	O2—C22—C17	113.37 (9)
N1—C3—C2	121.95 (10)	O2—C23—H23A	109.5
N1—C3—C4	118.77 (9)	O2—C23—H23B	109.5
C2—C3—C4	119.29 (9)	H23A—C23—H23B	109.5
C5—C4—C3	119.00 (9)	O2—C23—H23C	109.5
C5—C4—C14	121.49 (10)	H23A—C23—H23C	109.5
C3—C4—C14	119.51 (9)	H23B—C23—H23C	109.5
C4—C5—C6	122.88 (9)	N1-C24-C25	113.19 (10)
С4—С5—Н5	118.6	N1-C24-H24A	108.9
С6—С5—Н5	118.6	C25—C24—H24A	108.9
C7—C6—C1	119.38 (9)	N1—C24—H24B	108.9
C7—C6—C5	124.23 (9)	C25—C24—H24B	108.9
C1—C6—C5	116.38 (9)	H24A—C24—H24B	107.8
C6—C7—C8	118.96 (9)	С24—С25—Н25А	109.5
C6—C7—C16	121.31 (9)	C24—C25—H25B	109.5
C8—C7—C16	119.63 (9)	H25A—C25—H25B	109.5
C7—C8—C13	119.28 (9)	C24—C25—H25C	109.5
C7 - C8 - C9	124 03 (9)	H25A - C25 - H25C	109.5
C13—C8—C9	116 67 (9)	$H_{25B} - C_{25} - H_{25C}$	109.5
C10-C9-C8	122 33 (9)	N2_C26_C27	110 50 (10)
C10-C9-H9	118.8	N2_C26_H26A	109.5
C8—C9—H9	118.8	C27—C26—H26A	109.5
$C_{0} = C_{10} = C_{11}$	110.04 (0)	N2_C26_H26B	109.5
07-010-011	···/. ())	112 -C20-1120D	107.5

C9—C10—C15	121.00 (9)	C27—C26—H26B	109.5
C11—C10—C15	119.95 (9)	H26A—C26—H26B	108.1
N2—C11—C12	120.82 (10)	С26—С27—Н27А	109.5
N2-C11-C10	119.37 (9)	С26—С27—Н27В	109.5
C12—C11—C10	119.80 (9)	H27A—C27—H27B	109.5
C13—C12—C11	119.16 (9)	С26—С27—Н27С	109.5
C13—C12—H12	120.4	H27A—C27—H27C	109.5
C11—C12—H12	120.4	H27B—C27—H27C	109.5
O1—C13—C12	115.99 (9)	N3—C28—C29	179.32 (18)
O1—C13—C8	121.03 (9)	С28—С29—Н29А	109.5
C12—C13—C8	122.98 (9)	С28—С29—Н29В	109.5
C4—C14—H14A	109.5	H29A—C29—H29B	109.5
C4—C14—H14B	109.5	С28—С29—Н29С	109.5
H14A—C14—H14B	109.5	H29A—C29—H29C	109.5
C4—C14—H14C	109.5	H29B—C29—H29C	109.5
C13—O1—C1—C2	179.54 (9)	C9—C10—C11—C12	1.40 (15)
C13—O1—C1—C6	-0.75 (15)	C15—C10—C11—C12	-179.79 (10)
O1—C1—C2—C3	-178.69 (9)	N2-C11-C12-C13	177.80 (10)
C6—C1—C2—C3	1.61 (16)	C10-C11-C12-C13	-0.92 (16)
C24—N1—C3—C2	-4.43 (18)	C1—O1—C13—C12	-178.66 (9)
C24—N1—C3—C4	174.88 (11)	C1—O1—C13—C8	1.91 (15)
C1—C2—C3—N1	179.50 (10)	C11—C12—C13—O1	-179.22 (9)
C1—C2—C3—C4	0.18 (16)	C11—C12—C13—C8	0.19 (16)
N1—C3—C4—C5	179.10 (11)	C7—C8—C13—O1	-2.03 (15)
C2—C3—C4—C5	-1.56 (16)	C9—C8—C13—O1	179.45 (9)
N1—C3—C4—C14	-1.55 (16)	C7—C8—C13—C12	178.58 (10)
C2—C3—C4—C14	177.78 (11)	C9—C8—C13—C12	0.06 (15)
C3—C4—C5—C6	1.23 (17)	C6—C7—C16—C21	93.07 (12)
C14—C4—C5—C6	-178.10 (11)	C8—C7—C16—C21	-83.31 (12)
O1—C1—C6—C7	-0.26 (15)	C6—C7—C16—C17	-88.32 (13)
C2—C1—C6—C7	179.42 (10)	C8—C7—C16—C17	95.30 (12)
O1—C1—C6—C5	178.39 (9)	C21—C16—C17—C18	0.58 (15)
C2—C1—C6—C5	-1.93 (15)	C7—C16—C17—C18	-178.01 (9)
C4—C5—C6—C7	179.04 (10)	C21—C16—C17—C22	-179.32 (9)
C4—C5—C6—C1	0.46 (16)	C7—C16—C17—C22	2.09 (15)
C1—C6—C7—C8	0.11 (15)	C16—C17—C18—C19	-0.52 (15)
C5—C6—C7—C8	-178.42 (10)	C22—C17—C18—C19	179.38 (10)
C1—C6—C7—C16	-176.29 (9)	C17—C18—C19—C20	0.11 (16)
C5—C6—C7—C16	5.18 (16)	C18—C19—C20—C21	0.25 (16)
C6—C7—C8—C13	1.00 (15)	C19—C20—C21—C16	-0.19 (16)
C16—C7—C8—C13	177.46 (9)	C17—C16—C21—C20	-0.23 (15)
C6—C7—C8—C9	179.40 (10)	C7—C16—C21—C20	178.44 (10)
C16—C7—C8—C9	-4.14 (15)	C23—O2—C22—O3	2.09 (17)
C7—C8—C9—C10	-177.98 (10)	C23—O2—C22—C17	-178.43 (10)
C13—C8—C9—C10	0.46 (15)	C18—C17—C22—O3	179.92 (12)
C8—C9—C10—C11	-1.18 (15)	C16—C17—C22—O3	-0.18 (17)
C8—C9—C10—C15	-179.97 (10)	C18—C17—C22—O2	0.46 (15)
C26—N2—C11—C12	-4.18 (17)	C16—C17—C22—O2	-179.64 (9)
C26—N2—C11—C10	174.54 (10)	C3—N1—C24—C25	96.39 (14)

C9—C10—C11—N2	-177.33 (10)	C11—N2—C26—C27		-169.80 (11)
C15-C10-C11-N2	1.48 (15)			
Symmetry codes: (i) $-x+1$, $-y$, $-z$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N····Cl2	0.81 (2)	2.61 (2)	3.3644 (10)	156 (2)
N2—H2N···Cl1 ⁱⁱ	0.86 (2)	2.75 (2)	3.5603 (10)	159 (2)
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z+1$				

Fig. 1

Fig. 2